

Carbon Footprint for Organization

ดร.ภาณุวัฒน์ ประเสริฐพงษ์

ECØ-INDUSTRY

Research and Training Center

Wisdom of the Land

Mahidol University Simply Steps for GHG Accounting and Reporting

Setting Organization Boundaries

Setting Operational Boundaries

Identifying GHG Emission

Calculation of GHG Emission

GHG Emission Report

Verification

 \Rightarrow

Re-assessment (Tracking & Setting GHG Targets)

Faculty of Environment and Resource Studies

Mahidol University

Identifying and Calculating GHG Emissions

Identify sources and sinks

STEP I

Select calculation approach

STEP II

Collect activity data

STEP III

Choose or develop GHG emission factor

STEP IV

Calculate GHG emission

STEP V

Source: TCFO Guideline, 2013

Identifying GHG Emission Sources

SCOPE I

แหล่งกำเนิดก๊าซเรื่อนกระจก

tudies	ก๊าซเรื่อนกระจก	แหล่งกำเนิด
nd Resource S	Carbon dioxide, CO ₂	การเผาใหม้เชื้อเพลิงเครื่องกำเนิดไฟฟ้าฉุกเฉิน
		การเผาใหม้เชื้อเพลิงเครื่องตัดหญ้า
iment a		การเผาใหม้พลังงานเชื้อเพลิงผลิตใอน้ำ
Faculty of Environment and Resource Studies		การเผาใหม้เชื้อเพลิงภายในหน่วยซ่อมบำรุง
		การเผาใหม้เชื้อเพลิงของยานพาหนะ
		การเผาใหม้ของชีวมวล เช่น ไม้ แกลบ กะลา
		สารคับเพลิงชนิดการ์บอนไดออกไซด์

Faculty of Environment and Resource Studies

แหล่งกำเนิดก๊าซเรื่อนกระจก

ก๊าซเรื่อนกระจก	แหล่งกำเนิด	
	การฝังกลบขยะ	
Madhana CH	การบำบัดน้ำเสียแบบไม่ใช้ออกซิเจน	
Methane, CH ₄	การเลี้ยงสัตว์	
	การปล่อยก๊าซมีเทนจาก Septic Tank	
	การปล่อยก๊าซมีเทนจากปุ๋ยพืชสด	

Faculty of Environment and Resource Studies

Mahidol University Wisdom of the Land

แหล่งกำเนิดก๊าซเรื่อนกระจก

ก๊าซเรื่อนกระจก	แหล่งกำเนิด
Nitrous Oxide,	การใช้ปุ๋ยอินทรีย์และเคมีที่มีองค์ประกอบ ของในโตรเจน
$N_2^{}O$	การเผาใหม้ของเชื้อเพลิงฟอสซิลและชีวมวล
	วิสัญญี่แพทย์

ies	es		
arce Studies	ก๊าซเรื่อนกระจก	แหล่งกำเนิด	
aculty of Environment and Resource	Hydrofluorocarbons, HFCs	 สารทำความเย็น R-134a (HFC-134a) ในตู้เย็นตู้แช่ และ เครื่องปรับอากาศรถยนต์ R-410a (ประกอบด้วย HFC-32 และ HFC-125 เครื่องปรับอากาศ R-32 เครื่องปรับอากาศ 	
Fac		สารดับเพลิง	
		Halotron II (HFC-134a + HFC-125+CO2)	

es				
Resource Studies	ก๊าซเรื่อนกระจก	แหล่งกำเนิด		
and	Perfluorocarbons, PFCs	โรงงานผลิตอลูมิเนียม		
ıment		ใช้สำหรับ dry etching ในอุตสาหกรรม		
of Environment		Semiconductor		
ty of E		ใช้เป็นตัวทำละลาย		
acult				

es			
aculty of Environment and Resource Studies	ก๊าซเรื่อนกระจก	แหล่งกำเนิด	
	Sulphur hexafluoride, SF_6	การหล่อแมกนีเซียม	
		หม้อแปลงไฟฟ้าและ Breaker ชนิค SF ₆	
		ใช้สำหรับdry etching ในอุตสาหกรรม	
		Semiconductor	
Facult			

source Studie	ก๊าซเรื่อนกระจก	แหล่งกำเนิด
Faculty of Environment and Resource Studie	ชนิดอื่นๆ	 สารทำความเย็น R-22 (HCFC-22) ในเครื่องปรับอากาศ แบบ แยกส่วน R-12 (CFC-12) ในเครื่องปรับอากาศรถยนต์ รุ่นเก่า

SCOPE II

es				
nd Resource Studi	ก๊าซเรื่อนกระจก	แหล่งกำเนิด		
Faculty of Environment and Resource Studies	การปล่อยก๊าซเรื่อน กระจกทางอ้อมจาก การใช้พลังงาน	 การใช้พลังงานไฟฟ้า การใช้พลังงานใอน้ำ การใช้พลังงานความร้อน การใช้ความเย็น การใช้อากาศอัด 		

SCOPE III

Mahidol University

แหล่งกำเนิดก๊าซเรื่อนกระจก

Scope3: Other Indirect GHG Emissions

Upstream or downstream

Upstream scope 3 emissions

Downstream scope 3 emissions

Scope 3 category

- 1. Purchased goods and services
- Capital goods
- Fuel- and energy-related activities (not included in scope 1 or scope 2)
- 4. Upstream transportation and distribution
- Waste generated in operations
- Business travel
- Employee commuting
- Upstream leased assets
- 9. Downstream transportation and distribution
- 10. Processing of sold products
- 11. Use of sold products
- 12. End-of-life treatment of sold products
- 13. Downstream leased assets
- 14. Franchises
- Investments

การรวบรวมข้อมูล

รายการ	เอกสาร/หลักฐาน
ปริมาณน้ำมันดีเซลเครื่องปั๊มน้ำ	ใบเบิก/ใบเสร็จ
ปริมาณ LPG โรงอาหาร	ใบเสร็จ
ปริมาณแก๊สโซฮอล์ของยานพาหะ	ใบเสร็จ/ฟลีทการ์ค
ปริมาณสารทำความเย็นชนิค R32	ใบเสร็จ/ใบเบิก
ปริมาณสารคับเพลิงชนิค CO ₂	ใบเสร็จ
ปริมาณการปล่อยมีเทน Septic tank	จำนวนพนักงาน

การรวบรวมข้อมูล

รายการ	เอกสาร/หลักฐาน
ปริมาณการใช้พลังงานไฟฟ้า	ใบเสร็จ
ปริมาณการใช้พลังงานไอน้ำ	ใบเสร็จ
ปริมาณการใช้น้ำประปา	ใบเสร็จ/ระบบ SAP
ปริมาณการได้มาของวัตถุดิบ	ใบเสร็จ/ระบบ SAP
ปริมาณการได้มาขยะ	ระบบE- manifest/แบบเก็บข้อมูล
การเดินทางของพนักงาน	แบบเก็บข้อมูล
การเดินทางโดยเครื่องบิน	ใบเสร็จ

Mahidol University

การรวบรวมข้อมูล

	Troons i	ย์ปิโตรเ ไม่รอบ อ.โพก 112 1 1 <u>7</u>	ลียม (ร์ประทับช้าง วันที่ 71	1994) 9.8882 66190	57
	นครปฐฉ	11.70	7.7.7.	8700 0:21	H WJ IF
เลขประจำตัวผู้เสียภา					
	จำนวนลิตร	ราคาหน่	วยละ	จำนวนเงิน	
รายการ	จานวนลตร	บาท	สด.	บาท	aa.
แก๊สโซฮอล์ 91					
แก๊สโซฮอล์ 98 (อี 20)	48.20	29	88	1440	
แก๊สโซฮอล์ 95					
ดีเซล					
					18 1
		100			-
	มูลค่าสินค้า 1745 40				
ภาษีมูลค่าเพิ่ม 7% 9 น 20					
รวมเงินทั้งสิ้น 1น40					
(a4, 4,4850,8030 ym 1,01					
(4412 18 410 27 191170)					
а	ลงชื่อ 050/ ครั้งแล้งเ				

ปริมาณแก๊สโซฮอล์ หน่วยเป็น<u>ลิตร</u> Faculty of Environment and Resource Studies

การคำนวณ

Emission = Activity Data (AD) × Emission Factor (EF)

e.g. fossil fuel consumption (L/day, L/month, L/year)

e.g. kg_{CO_2}/L , $kg_{N_{2O}}/L$, kg_{CH_4}/L

e.g. kg_{CO_2}/day , $kg_{N_{2O}}/month$, $kg_{CH_4}/year$

Most of activity data come from the purchased quantities

การคัดเลือกหรือพัฒนาค่าการปล่อยหรือดูดกลับก๊าซเรือนกระจก

- ทราบแหล่งที่มา ซึ่งเป็นที่ยอมรับ
- มีความเหมาะสมกับแหล่งปล่อยหรือดูดกลับก๊าซเรือนกระจกแต่ละแหล่ง
- เป็นค่าปัจจุบันในขณะที่ใช้คำนวณ
- คำนึงถึงความไม่แน่นอนในการคำนวณ และนำมาใช้คำนวณเพื่อให้ได้ผลลัพธ์ที่ถูกต้อง
- ไม่ขัดแย้งกับการประยุกต์ใช้บัญชีรายการปริมาณก๊าซเรือนกระจก

การคัดเลือกหรือพัฒนาค่าการปล่อยหรือดูดกลับก๊าซเรือนกระจก

Gas	GWP100 factor ¹	Lifespan
Carbon dioxide (CO ₂)	1	Thousands of years
Nitrous oxide (N ₂ O)	273	About 110 years
Methane (CH ₄)	Fossil: 29.8 Non-fossil: 27.0	About 12 years

¹GWP100 factors from the IPCC's 6th Assessment Report (AR6). These are the most recent factors available. However, the UK's national GHG accounting currently uses older factors.

Studies

ค่าการปล่อยหรือดูดกลับก๊าซเรื่อนกระจก (Emission Factor)

		EMISSION FACTORS						
ชื่อ	Units	CO ₂	Fossil CH ₄	CH ₄	N ₂ O	Total	แหล่งอ้างอิงข้อมูล	
		[kg CO ₂ /unit]	[kg CH4/unit]	[kg CH ₄ /unit]	[kg N ₂ O/unit]	[kg CO2eq/unit]		
nary Combustion								
Natural gas	scf	5.72E-02	1.02E-06		1.02E-07	0.0573	IPCC Vol.2 table 2.2, DEDE	
Natural gas	MJ	5.61E-02	1.00E-06		1.00E-07	0.0562	IPCC Vol.2 table 2.2, DEDE	
Lignite	kg	1.06E+00	1.05E-05		1.57E-05	1.0619	IPCC Vol.2 table 2.2, DEDE	
Fuel oil A	litre	3.21E+00	1.24E-04		2.49E-05	3.2200	IPCC Vol.2 table 2.2, PTT	
Fuel oil C	litre	3.24E+00	1.25E-04		2.51E-05	3.2457	IPCC Vol.2 table 2.2, PTT	
Gas/Diesel oil	litre	2.70E+00	1.09E-04		2.19E-05	2.7078	IPCC Vol.2 table 2.2, DEDE	
Anthracite	kg	3.09E+00	3.14E-05		4.71E-05	3.1000	IPCC Vol.2 table 2.2, DEDE	
Sub-bituminous coal	kg	2.53E+00	2.64E-05		3.96E-05	2.5454	IPCC Vol.2 table 2.2, DEDE	
Jet Kerosene	litre	2.47E+00	1.04E-04		2.07E-05	2.4775	IPCC Vol.2 table 2.2, DEDE	
LPG	litre	1.68E+00	2.66E-05		2.66E-06	1.6812	IPCC Vol.2 table 2.2, DEDE	
LPG	kg	3.11E+00	4.93E-05		4.93E-06	3.1134	IPCC Vol.2 table 2.2, DEDE LPG 1 litre = 0.54 kg	
Motor gasoline	litre	2.18E+00	9.44E-05		1.89E-05	2.1894	IPCC Vol.2 table 2.2, DEDE	
FUEL WOOD	kg			4.80E-04	6.40E-05	0.0304	IPCC Vol.2 table 2.2, DEDE	
Bagasse	kg			2.26E-04	3.01E-05	0.0143	IPCC Vol.2 table 2.2, DEDE	
Palm kernel shell	kg			5.56E-04	7.41E-05	0.0352	IPCC Vol.2 table 2.2, DEDE	
Cob	kg			5.03E-04	6.71E-05	0.0319	IPCC Vol.2 table 2.2, DEDE	
Biogas	m3			2.09E-05	2.09E-06	0.0011	IPCC Vol.2 table 2.2, DEDE	

การเผาใหม้อยู่กับที่ (Stationary combustion)

urce Studies

การเผาใหม้อยู่กับที่ (Stationary combustion)

รายการ	ปริมาณ	หน่วย	EF	Emission (kgCO2e)
ปริมาณการเผาใหม้น้ำมันคีเซลเครื่องปั๊มน้ำ	100	ลิตร	2.7078	270.78
ปริมาณการเผาใหม้ LPG โรงอาหาร	50	กิโลกรัม	3.1134	155.67
ปริมาณเผาใหม้น้ำมันเตา ประเภท C เครื่องผลิตไอน้ำ	1000	ลิตร	3.2457	3,245.70
ปริมาณการแก๊สโซฮอล์เครื่องตัดหญ้า	80	ลิตร	2.1894	175.15
ปริมาณการเผาใหม้ถ่านหินซับบิทูมินัสผลิตน้ำร้อน	2000	กิโลกรัม	2.5454	5,090.80

🥞 ค่าการปล่อยหรือดูดกลับก๊าซเรื่อนกระจก (Emission Factor)

Mobile Combustion (On road)						
Motor Gasoline - uncontrolled	litre	2.18E+00	1.04E-03	1.01E-04	2.2394	IPCC Vol.2 table 3.2.1, 3.2.2, DEDE
Motor Gasoline - oxydation catalyst	litre	2.18E+00	7.87E-04	2.52E-04	2.2719	IPCC Vol.2 table 3.2.1, 3.2.2, DEDE
Motor Gasoline - low mileage light dut	litre	2.18E+00	1.20E-04	1.79E-04	2.2327	IPCC Vol.2 table 3.2.1, 3.2.2, DEDE
Gas/ Diesel Oil	litre	2.70E+00	1.42E-04	1.42E-04	2.7406	IPCC Vol.2 table 3.2.1, 3.2.2, DEDE
Compressed Natural Gas	kg	2.13E+00	3.49E-03	1.14E-04	2.2609	IPCC Vol.2 table 3.2.1, 3.2.2, PTT
Liquified Petroleum Gas	litre	1.68E+00	1.65E-03	5.32E-06	1.7306	IPCC Vol.2 table 3.2.1, 3.2.2, DEDE
Liquified Petroleum Gas	kg	3.11E+00	3.06E-03	9.86E-06	3.2049	IPCC Vol.2 table 3.2.1, 3.2.2, DEDE LPG 1 litre = 0.54 kg
Mobile Combustion (Off road)	Ž				3	
Diesel	50.		*			
- Agriculture	litre	2.70E+00	1.51E-04	1.04E-03	2.9793	IPCC Vol.2 table 3.3.1, DEDE
- Forestry	litre	2.70E+00	1.51E-04	1.04E-03	2.9793	IPCC Vol.2 table 3.3.1, DEDE
- Industry	litre	2.70E+00	1.51E-04	1.04E-03	2.9793	IPCC Vol.2 table 3.3.1, DEDE
- Household	litre	2.70E+00	1.51E-04	1.04E-03	2.9793	IPCC Vol.2 table 3.3.1, DEDE
Motor Gasoline - 4 stroke	3					
- Agriculture	litre	2.18E+00	2.52E-03	6.30E-05	2.2738	IPCC Vol.2 table 3.3.1, DEDE
- Forestry	litre	2.18E+00	0.00E+00	0.00E+00	2.1816	IPCC Vol.2 table 3.3.1, DEDE
- Industry	litre	2.18E+00	1.57E-03	6.30E-05	2.2455	IPCC Vol.2 table 3.3.1, DEDE
- Household	litre	2.18E+00	3.78E-03	6.30E-05	2.3116	IPCC Vol.2 table 3.3.1, DEDE
Motor Gasoline - 2 stroke						12
- Agriculture	litre	2.18E+00	4.41E-03	1.26E-05	2.3171	IPCC Vol.2 table 3.3.1, DEDE
- Forestry	litre	2.18E+00	5.35E-03	1.26E-05	2.3454	IPCC Vol.2 table 3.3.1, DEDE
- Industry	litre	2.18E+00	4.09E-03	1.26E-05	2.3077	IPCC Vol.2 table 3.3.1, DEDE
- Household	litre	2.18E+00	5.67E-03	1.26E-05	2.3549	IPCC Vol.2 table 3.3.1, DEDE

การเผาใหม้เคลื่อนที่ (Mobile combustion)

Resource Studies

การเผาใหม้อยู่กับที่ (Mobile combustion) <u>ทราบปริมาณเชื้อเพลิง</u>

รายการ	ปริมาณ	หน่วย	EF	Emission (kgCO2e)
ปริมาณการเผาใหม้น้ำมันดีเซลของรถยนต์	100	ลิตร	2.7406	274.06
ปริมาณการเผาใหม้แก๊สโซฮอล์ของรถยนต์	100	ลิตร	2.2394	223.94
ปริมาณเผาใหม้น้ำมันดีเซลของเครื่องจักรหนัก	100	ลิตร	2.9793	297.93
ปริมาณเผาใหม้ NGV ของรถบรรทุก	100	กิโลกรัม	2.2609	226.09
ปริมาณการเผาใหม้ LPG ของรถโฟลคลิฟท์	100	กิโลกรัม	3.2049	320.49

การเผาใหม้อยู่กับที่ (Mobile combustion) <u>ใม่ทราบปริมาณเชื้อเพลิง</u>

ปัจจัยสำหรับการคำนวณ ประกอบด้วย

- ระยะทาง ไป-กลับ (กิโลเมตร)
- กำลังเครื่องยนต์ (ซีซี)
- อัตราการสิ้นเปลื้องเชื้อเพลิง (หน่วย/กิโลเมตร)

การคำนวณ

ระยะทาง

Faculty of Environment and Resource Studies

การเผาใหม้อยู่กับที่<u>ไม่ทราบปริมาณเชื้อเพลิง</u>

ภาคผนวก10

อัตราการสิ้นเปลืองเชื้อเพลิงจากการเดินทางด้วยรถประเภทต่างๆ

ตาราง 10-1 อัตราการสิ้นเปลืองเชื้อเพลิงจากการเดินทางด้วยรถประเภทต่าง ๆ

ประเภทรถยนค์	เชื้อเพลิง	หน่วย	อัตรา การสิ้นเปลือง เชื้อเพลิง	แหล่งข้อมูลอ้างอิง
รถยนต์ขนาดเล็ก (1500 cc)	เบนซิน	km/L	17.770	กรมควบคุมมลพิษ, 2551
รถยนต์ขนาดกลาง (1600 cc)	เบนซิน	km/L	15.238	กรมควบคุมมลพิษ, 2551
รถยนต์ขนาดกลาง (1800 cc)	เบนซิน	km/L	13.796	กรมควบคุมมลพิษ, 2551
รถยนต์ขนาดใหญ่(2000 cc)	เบนซิน	km/L	12.248	กรมควบคุมมลพิษ, 2551
รถยนต์เฉลี่ย <mark>ทุกขนาด</mark>	เบนซิน	km/L	14.763	กรมควบคุมมลพิษ, 2551

Eco-Industry Research and Training Center, Mahidol University

es

Faculty of Environ

ประเภทยานพาหนะ	ต้นทาง-ปลายทาง	ระยะทางไป-กลับ (km)	ชนิดเชื้อเพถิง	กำลังแรงม้า (ซีซี)
รถตู้	นครปฐม-ระยอง	424	คีเซล	3,000
รถกระบะ	กรุงเทพ-สกลนคร	1,290	คีเซล	2,500

<u>ยกตัวอย่าง</u> เดินทางไปราชการไปกลับ นครปฐม-ระยอง ด้วยรถตู้โดยสาร

<u>รถตู้ดีเซล</u> กำลังแรงม้า 3,000 ซีซี อัตราการสิ้นเปลื้องน้ำมัน 10 กิโลเมตรต่อลิตร

ปริมาณน้ำมันลิตร = (424*1)/10

= 42.4 ถิตร

การปล่อยการเรื่อนกระจกโดยตรงจากกระบวนการผลิต (Process Emission)

$$CaCO_3$$
 (s) — CaO (s) + CO_2 (g)

CaCO₃ จำนวน 1 โมล เกิด CO₂ 1 โมล
 เมื่อ CaCO₃ จำนวน 100 อะตอม เกิด CO₂ 44 อะตอม
 ถ้า CaCO₃ จำนวน 1 อะตอม เกิด CO₂ เท่ากับ (1*44)/100
 จากสมการเผาใหม้ CaCO₃ เกิด CO₂ เท่ากับ 0.4400

การปล่อยการเรือนกระจกโดยตรงจากรั่วซึม (Fugitive Emission)

- สารทำความเย็น
- สารคับเพลิงชนิดการ์บอนไดออกไซด์
- การปล่อยก๊าซมีเทน Septic tank
- การปล่อยก๊าซมีเทนระบบบำบัดน้ำเสียไม่เติมอากาศ
- การปล่อยก๊าซซัลเฟอร์เฮกซะฟลูออไรค์จากสวิตช์เกียร์

ข้อมูลสำหรับคำนวณการปล่อย GHG สารทำความเย็น

- ประเภทของสารทำความเย็น (R.....)
- ปริมาณสารทำความเย็น (กิโลกรัม)
- ค่าสัมประสิทธิ์การปล่อยก๊าซเรื่อนกระจก (Emission Factor; EF)

GHG = ปริมาณสารทำความเย็น (กิโลกรัม) × Emission Factor (EF)

สารทำความเย็นเครื่องปรับอากาศ

lydrofluorocarbons		
HFC-23	CHF ₃	12,400
HFC-32	CH ₂ F ₂	677
HFC-41	CH ₃ F	116
HFC-125	CHF ₂ CF ₃	3,170
HFC-134	CHF ₂ CHF ₂	1,120
HFC-134a	CH ₂ FCF ₃	1,300
HFC-143	CH ₂ FCHF ₂	328
HFC-143a	CH ₃ CF ₃	4,800
HFC-152	CH ₂ FCH ₂ F	16
HFC-152a	CH ₃ CHF ₂	138
HFC-161	CH ₃ CH ₂ F	4
HFC-227ea	CF ₃ CHFCF ₃	3,350
HFC-236cb	CH ₂ FCF ₂ CF ₃	1,210
HFC-236ea	CHF ₂ CHFCF ₃	1,330
HFC-236fa	CF ₃ CH ₂ CF ₃	8,060
HFC-245ca	CH ₂ FCF ₂ CHF ₂	716

e Studies

สารทำความเย็นเครื่องปรับอากาศ

รายการ	ปริมาณ	หน่วย	EF	Emission (kgCO2e)
ปริมาณสารทำความเย็นชนิค R 23	10	กิโลกรัม	12,400	124,000
ปริมาณสารทำความเย็นชนิด R 32	10	กิโลกรัม	677	6,770
ปริมาณสารทำความเย็นชนิค R 134a	10	กิโลกรัม	1,300	13,000
ปริมาณสารทำความเย็นชนิด R 125	10	กิโลกรัม	3,170	31,700
ปริมาณสารทำความเย็นชนิด R 134	10	กิโลกรัม	1,120	11,200

ข้อมูลสำหรับคำนวณการปล่อยก๊าซมีเทน Septic tank

- จำนวนพนักงานเฉลี่ย
- จำนวนผู้รับเหมาเฉลี่ย
- จำนวนแม่บ้านเฉลี่ย
- จำนวนผู้รักษาความปลอดภัยเฉลี่ย
- วันทำงาน

IPCC Vol. 5, table 6.3 (บ่อเกรอะ, บ่อซึม)

การปล่อยก๊าซมีเทน Septic tank

The general equation to estimate CH4 emissions from domestic wastewater is as follows:

EQUATION 6.1
TOTAL CH₄ EMISSIONS FROM DOMESTIC WASTEWATER

$$CH_4 \ Emissions = \left[\sum_{i,j} \left(U_i \bullet T_{i,j} \bullet EF_j\right)\right] \left(TOW - S\right) - R$$

Where:

CH₄ Emissions = CH₄ emissions in inventory year, kg CH₄/yr

TOW = total organics in wastewater in inventory year, kg BOD/yr

S = organic component removed as sludge in inventory year, kg BOD/yr

 U_i = fraction of population in income group i in inventory year, See Table 6.5.

T_{i,j} = degree of utilisation of treatment/discharge pathway or system, j, for each income group fraction i in inventory year, See Table 6.5.

i = income group: rural, urban high income and urban low income

j = each treatment/discharge pathway or system

EF_j = emission factor, kg CH₄/kg BOD

R = amount of CH₄ recovered in inventory year, kg CH₄/yr

IPCC Vol. 5, table 6.3 (บ่อเกรอะ, บ่อซึม)

การคำนวณ

ข้อมูลสำหรับคำนวณการปล่อยก๊าซมีเทนระบบบำบัดน้ำเสีย

ค่าแฟกเตอร์การปล่อยก๊าซเรือนกระจกแยกตามประเภทของการบำบัดน้ำเสีย

แนวทางการคำนวณปริมาณมีเทนจากค่าการปล่อยของการจัดการน้ำเสีย

Wi ปริมาณน้ำเสีย (ลบ.ม.)

COD ความต้องการออกซิเจนทางเคมีของน้ำเสียขาเข้า (mg/L)

S สารอินทรีย์ที่ถูกกำจัดในรูปของสลัดจ์ (กิโลกรัม COD)

การคำนวณ

ประเภทของ การบำบัคน้ำเสีย	GHG Emission (kg CH ₂)	หมายเหตุ
กรณีน้ำเสียไม่ได้รับการบำบัต		
ปล่อยน้ำเสียลงสู่ทะเล แม่น้ำ และ บึงโดยตรง	0.025 × [(Wi × COD/1000)-S]	ไม่รวม <mark>ปริมาณก๊าซเรือนกระจก</mark> ที่เกิดจากสารอินทรีย์ภายในแหล่งน้ำ
กรณีน้ำเสียได้รับการบำบัด		
แบบเติมอากาศ	0	
แบบเติมอากาศ	0.075 × [(Wi × COD/1000)-S]	ประเภทที่ไม่มีการควบคุมดูแล และมีการทำงานเกินความจุ
การกำจัดสลัดจ์แบบไม่เติมอากาศ	0.200 × [(Wi × COD/1000)-S]	ไม่รวมปริมาณก๊าซเรือนกระจก ที่ดักเก็บได้จากระบบบำบัด
Reactor แบบไม่เติมอากาศ	0.200 × [(Wi × COD/1000)-S]	ไม่รวมปริมาณก๊าซเรือนกระจก ที่ตักเก็บได้จากระบบบำบัต
บ่อบำบัดตื้นแบบไม่เติมอากาศ	0.050 × [(Wi × COD/1000)-S]	ความลึกไม่เกิน 2 เมตร
บ่อบำบัดลึกแบบไม่เติมอากาศ	0.200 × [(Wi × COD/1000)-S]	ความลึกมากกว่า 2 เมตร

Eco-Industry Research and Training Center, Mahidol University

Mahidol University Wisdom of the Land

การคำนวณปริมาณการใช้พลังงานไฟฟ้า

ปริมาณการใช้พลังงานไฟฟ้า หน่วยเป็นกิโลวัตต์-ชั่วโมง

Mahidol University

การคำนวณปริมาณการใช้พลังงานไฟฟ้า

ies

Electricity, grid mix (ไฟฟ้า)						8	
ไฟฟ้าแบบ grid mix ปี 2016-2018; LCIA method IPCC 2013 GWP 100a V1.03	kWh	120	¥	-	*	0.4999	Thai National LCI Database, TIISMTEC-NSTDA, AR5 (with TGO electricity 2016-2018)

no

รายการ	ปริมาณ	หน่วย	EF	Emission (kgCO2e)
ปริมาณการใช้พลังงานไฟฟ้า	346	kWh	0.4999	172.96

Faculty of Enviro

Mahidol University Wisdom of the Land

การคำนวณ GHG SCOPE 3

CATEGORY 1 Purchased Goods and Services

CO,e emissions for purchased goods or services =

sum across purchased goods or services:

 Σ (quantities of good purchased (e.g., kg)

× supplier-specific product emission factor of purchased good or service (e.g., kg CO,e/kg))

Mahidol University

การคำนวณปริมาณการใช้กระดาษ A4

ลำดับที่	ชื่อ	รายละเอียด	หน่วย	ค่าแฟคเตอร์ (kgCO₂e/หน่วย)	แหล่งข้อมูลอ้างอิง	วันหีอัพเดท
591.	เยือกึ่งเคมี	ผลิตจา <mark>ก</mark> ไม้ยูคาลิปตัส; ครอบคลุมตั้งแต่การเตรียม วัตถุดิ <mark>บ การตัมเยื้อ และการขึ้นรูปเยื้อแผ่น; LCIA</mark> method IPCC 2013 GWP 100a V1.03	kg	0.2994	Thai National LCI Database, TIIS-MTEC-NSTDA	Update_Dec2019
592.	กระดาษพิมพ์เขียนแบบ ไม่เคลือบผิว	ครอบคลุมตั้งแต่การเตรียมน้ำเยื่อ การทำ แผ่นกระดาษ การแปรรูป และการบรรจุหีบห่อ; LCIA method IPCC 2013 GWP 100a V1.03	kg	2.1020	Thai National LCI Database, TIIS-MTEC-NSTDA	Update_Dec2019
593.	กระดาษพิมพ์เขียนแบบเคลือบผิว	ครอบคลุมตั้งแต่การเตรียมน้ำเยื่อ การทำ แผ่นกระดาษ การเคลือบผิว การแปรรูป และการ บรรจุหีบห่อ; LCIA method IPCC 2013 GWP 100a V1.03	kg	2.1639	Thai National LCI Database, TIIS-MTEC-NSTDA	Update_Dec2019
594.	กระดาษหนังสือพิมพ์	ผลิตจากเยือกระดาษรีไซเคิลที่ได้จากกระดาษ หนังสือพิมพ์เก่า; LCIA method IPCC 2013 GWP 100a V1.03	kg	1.3589	Thai National LCI Database, TIIS-MTEC-NSTDA	Update_Dec2019
595.	กระดาษคราฟท์ ชนิดทำผิวกล่อง	ครอบคลุมตั้งแต่การเตรียมน้ำเยื่อ จนถึงการทำ แผ่นกระดาษ; LCIA method IPCC 2013 GWP 100a V1.03	kg	1.6324	Thai National LCI Database, TIIS-MTEC-NSTDA	Update_Dec2019
596.	กระดาษคราฟท์ ชนิดทำลอน	ครอบคลุมตั้งแต่การเตรียมน้ำเยื่อ จนถึงการทำ แผ่นกระดาษ; LCIA method IPCC 2013 GWP 100a V1.03	kg	1.6184	Thai National LCI Database, TIIS-MTEC-NSTDA	Update_Dec2019
597.	กระดาษกล่องขาวเคลือบแป้ง/ กระดาษกล่องแป้งหลังเทา	ครอบคลุมตั้งแต่การเตรียมน้ำเยื่อ การทำ แผ่นกระดาษ การเคลือบผิว การแปรรูป และการ บรรจุหีบห่อ; LCIA method IPCC 2013 GWP 100a V1.03	kg	1.8679	Thai National LCI Database, TIIS-MTEC-NSTDA	Update_Dec2019

รายการ	ปริมาณ	หน่วย	EF	Emission (kgCO2e)
ปริมาณการใช้กระคาษ A4 ของสำนักงาน	100	กิโลกรัม	2.1639	216.39

Mahidol University Wisdom of the Land

CATEGORY 2 Capital Goods

The calculation methods for category 1 (Purchased goods and services) and category 2 (Capital goods) are the same. For guidance on calculating emissions from category 2 (Capital goods), refer to the guidance in the previous section for category 1 (Purchased goods and services).

ce Studies

CATEGORY 3 Fuel- and Energy-Related Activities Not Included in Scope 1 or Scope 2

Upstream CO₂e emissions of purchased fuels (extraction, production, and transportation of fuels consumed by the reporting company) =

sum across each fuel type consumed:

 Σ (fuel consumed (e.g., kWh) × upstream fuel emission factor (kg CO₂e)/kWh))

where:

upstream fuel emission factor = life cycle emission factor – combustion emission factor.

щ

e Studies

CATEGORY 3 Fuel- and Energy-Related Activities Not Included in Scope 1 or Scope 2

Upstream CO₂e emissions of purchased electricity
(Extraction, production, and transportation of fuels consumed in the generation of electricity, steam, heating, and cooling that is consumed by the reporting company) =

sum across suppliers, regions, or countries:

- Σ (electricity consumed (kWh) × upstream electricity emission factor (kgCO₂e)/kWh))
 - + (steam consumed (kWh) × upstream steam emission factor (kg CO,e)/kWh))
 - + (heating consumed (kWh) × upstream heating emission factor (kg CO,e)/kWh))
 - + (cooling consumed (kWh) × upstream cooling emission factor (kg CO,e)/kWh))

where:

upstream emission factor = life cycle emission factor – combustion emissions factor – T&D losses

Mahidol University

การคำนวณ GHG SCOPE 3

Studies

CATEGORY 3 Fuel- and Energy-Related Activities Not Included in Scope 1 or Scope 2

Country	Upstream emission factor of purchased electricity (kg CO2e/kWh)	Electricity/heat combustion emis- sion factor (kg CO2e/kWh)	T&D loss rate (percent)	Upstream emission factor of purchased heating (kg CO2e/ kWh)
Australia	0.12	0.8 (electricity)	10 (electricity)	N/A
Canada	0.10	0.4 (electricity) 0.15 (heat)	13 (electricity) 5 (heat)	0.05
India	0.15	0.8 (electricity)	15 (electricity)	N/A
United States	0.10	0.5 (electricity)	10 (electricity)	N/A
Turkey	0.05	0.4 (electricity)	12 (electricity)	N/A

tudies

CATEGORY 3 Fuel- and Energy-Related Activities Not Included in Scope 1 or Scope 2

upstream emissions from purchased electricity (category 3, activity B):

=
$$(500,000 \times 0.12) + (600,000 \times 0.1) + (400,000 \times 0.15) + (5,500,000 \times 0.1) + (200,000 \times 0.05)$$

= $740,000 \text{ kg CO}_2\text{e}$

life cycle emissions from transmission and distribution losses (category 3, activity C):

=
$$(500,000 \times 0.8 \times 0.1) + (600,000 \times 0.4 \times 0.13) + (50,000 \times 0.15 \times 0.05) + (400,000 \times 0.8 \times 0.15) + (5,500,000 \times 0.5 \times 0.1) + (200,000 \times 0.4 \times 0.12)$$

= $404,175 \text{ kg CO}_2\text{e}$

upstream emissions from purchased heating (category 3, activity B):

total emissions from upstream purchased electricity and heat including transmission and distribution losses is calculated as follows:

=
$$740,000 + 404,175 + 2,500$$

= $1,146,675 \text{ kg CO}_2\text{e}$

d Resource Studies

การคำนวณ GHG SCOPE 3

CATEGORY 4 Upstream Transportation and Distribution

Fuel-based method (transportation)

CO,e emissions from transportation =

sum across fuel types:

 Σ (quantity of fuel consumed (liters) × emission factor for the fuel (e.g., kg CO₂e/liter))

+

sum across grid regions:

 Σ (quantity of electricity consumed (kWh) × emission factor for electricity grid (e.g., kg CO,e/kWh))

+

sum across refrigerant and air-conditioning types:

 Σ (quantity of refrigerant leakage × global warming potential for the refrigerant (e.g., kg CO₂e))

e Studies

CATEGORY 4 Upstream Transportation and Distribution

Supplier	Fuel consumed (liters) or refrigerant leakage (kg)	Fuel/refrigerant type	Emission factor (kg CO2e/ liter for fuels; Global warming potential for refrigerants)
В	50,000	Diesel	3
С	80,000	Diesel	3
D	90,000	Diesel	3
D	50	Refrigerant R410a	2,000

studies

CATEGORY 4 Upstream Transportation and Distribution

emissions from diesel is calculated as:

 Σ (quantity of fuel consumed (liters) × emission factor for the fuel (kg CO₂e/liter)) = $(50,000 \times 3) + (80,000 \times 3) + (90,000 \times 3) = 660,000 \text{ kg CO2e}$

emissions from refrigerant leakage is calculated as:

 Σ (quantity of refrigerant leakage (kg) × emission factor for refrigerant (kg CO₂e/kg)) = $50 \times 2,000 = 100,000$ kg CO₃e

total emissions is calculated as follows:

emissions from fuels + emissions from refrigerant leakage = 660,000 + 100,000 = 760,000 kg CO₂e d Resource Studies

การคำนวณ GHG SCOPE 3

CATEGORY 4 Upstream Transportation and Distribution

Distance-based method (transportation)

CO₂e emissions from transportation =

sum across transport modes and/or vehicle types:

= Σ (mass of goods purchased (tonnes or volume) × distance travelled in transport leg (km)
 × emission factor of transport mode or vehicle type (kg CO₂e/tonne or volume/km))

Eco-Industry Research and Training Center, Mahidol University

rce Studies

CATEGORY 4 Upstream Transportation and Distribution

Supplier	Mass of transport- ed goods (tonnes)	Distance trans- ported (km)	Transport mode or vehicle type	Emission factor (kg CO ₂ e/TEU-km)
В	2	2,000	Truck (rigid, >3.5-7.5t)	0.2
С	1	3,000	Air (long haul)	1.0
D	6	4,000	Container 2,000–2,999 TEU	0.05

CATEGORY 4 Upstream Transportation and Distribution

Emissions from road transport:

= Σ (mass of goods purchased (tonnes) × distance travelled in transport leg × emission factor of transport mode or vehicle type (kg CO₂e/tonne-km))

=
$$2 \times 2,000 \times 0.2$$

= $800 \text{ kg CO}_2\text{e}$

emissions from air transport:

 = Σ (quantity of goods purchased (tonnes) x distance travelled in transport leg x emission factor of transport mode or vehicle type (kg CO₂e/tonne-km))

$$= 1 \times 3,000 \times 1$$

= 3,000 kg CO₂e

emissions from sea transport:

 = Σ (quantity of goods purchased (tonnes) x distance travelled in transport leg x emission factor of transport mode or vehicle type (kg CO₂e/tonne-km))

$$= 6 \times 4,000 \times 0.05$$

= 1,200 kg CO₂e

total emissions form transport (upstream) is calculated as:

= emissions from road transport + emissions from air transport + emissions from sea transport = 800 + 3,000 + 1,200

$$= 5,000 \text{ kg CO}_2\text{e}$$

ource Studies

CATEGORY 5 Waste Generated in Operations

Waste-type-specific method

CO,e emissions from waste generated in operations =

sum across waste types:

Σ (waste produced (tonnes or m³) × waste type and waste treatment specific emission factor (kg CO₂e/tonne or m³))

Faculty of Env

se Studies

CATEGORY 5 Waste Generated in Operations Waste-type-specific method

Waste produced	Waste treatment	Waste type and waste treatment specific emission factor
2,000 t	Landfill	40 kg CO ₂ e/t
5,000 t	Incinerated with energy recovery	2 kg CO ₂ e/t ^a
4,000 t	Recycled	10 kg CO ₂ e/t ^b
5,000 m³	Wastewater	0.5 kg CO₂e/m³
	produced 2,000 t 5,000 t 4,000 t	2,000 t Landfill 5,000 t Incinerated with energy recovery 4,000 t Recycled

 Σ (waste produced (tonnes)

× waste type and waste treatment specific emission factor (kg $CO_2e/tonne$ or m³)) = $(2,000 \times 40) + (5,000 \times 2) + (4,000 \times 10) + (5,000 \times 0.5) = 132,500 \text{ kg } CO_2e$

Studies

CATEGORY 5 Waste Generated in Operations

Average-data method

Total waste produced (tonnes)	Waste treatment	Proportion (percent)	Average emission factor of waste treatment method (kg CO ₂ e/tonne)
	Landfill	25	300
	Incinerated with energy recovery	5	Oª
40	Recycled	30	Ор
	Recycled	20	10°
	Composted	20	30

∑ (total mass of waste (tonnes)

× proportion of total waste being treated by waste treatment method

× emission factor of waste treatment method (kg CO2e/tonne))

$$= (40 \times 0.25 \times 300) + (40 \times 0.05 \times 0) + (40 \times 0.3 \times 0) + (40 \times 0.2 \times 10) + (40 \times 0.2 \times 30)$$

source Studies

CATEGORY 6 Business Travel

Distance-based method

CO₂e emissions from business travel =

sum across vehicle types:

Σ (distance travelled by vehicle type (vehicle-km or passenger-km)

× vehicle specific emission factor (kg CO₂e/vehicle-km or kg CO₂e/passenger-km))

+

(optional)

 Σ (annual number of hotel nights (nights) × hotel emission factor (kg CO₂e/night))

urce Studies

CATEGORY 6 Business Travel

Distance-based method

		Road Trave	st -			
Employee Group	Number of employees	Car type	Average employees	Location	Distance	Emission factor
Стоор	in group per vehicle	(km)	(kg CO ₂ e/ vehicle-km)			
Group 1	10	Hybrid	2	United States	50	1
Group 2	20	Average gasoline car	2	Australia	200	2
Group 3	100	Four wheel drive	3	United States	100	4

Eco-Industry Research and Training Center, Mahidol University

esource Studies

CATEGORY 6 Business Travel

Distance-based method

	Air Travel		
Number of	Flight type	Distance	Emission factor
in group		(km)	(kg CO ₂ e/passenger-km)
10	Long haul	10,000	5
20	Short haul	15,000	6
100	Long haul	12,000	5
	employees in group 10 20	Number of Flight type employees in group 10 Long haul 20 Short haul	Number of employees in group (km) 10 Long haul 10,000 20 Short haul 15,000

arce Studies

CATEGORY 7 Employee Commuting

Distance-based method

CO₂e emissions from employee travel =

first, sum across all employees to determine total distance travelled using each vehicle type:

total distance travelled by vehicle type (vehicle-km or passenger-km)
= Σ (daily one-way distance between home and work (km) × 2 × number of commuting days per year)

then, sum across vehicle types to determine total emissions:

kg CO₂e from employee commuting

= Σ (total distance travelled by vehicle type (vehicle-km or passenger-km)
 × vehicle specific emission factor (kg CO₂e/vehicle-km or kg CO₂e/passenger-km))

+

(optionally) for each energy source used in teleworking:

 Σ (quantities of energy consumed (kWh) × emission factor for energy source (kg CO₂e/kWh))

ource Studies

CATEGORY 7 Employee Commuting

Distance-based method

Employee	Rail commute (times per week)	One way distance by rail (km)	Rail emission factor (kg CO ₂ e/ passenger- kilometer)	Car commute (times per week	Car emission factor (kg CO e/ vehicle- kilometer)	One way distance by car (km)
А	5	10	0.1	0	0.2	N/A
В	4	10	0.1	1	0.2	15
C	0	N/A	0.1	5	0.2	20

urce Studies

CATEGORY 7 Employee Commuting

Distance-based method

the total distance travelled by rail (km) is calculated as:

 Σ (daily one way distance between home and work (km) \times 2 \times 5 \times number of commuting weeks per year) = $(10 \times 2 \times 5 \times 48) + (10 \times 2 \times 4 \times 48) = 8,640$ km

the total distance travelled by car (km) is calculated as:

 Σ (daily one way distance between home and work (km) \times 2 \times 5 \times number of commuting weeks per year) = $(15 \times 2 \times 1 \times 48) + (20 \times 2 \times 5 \times 48) = 11,040$ km

total emissions from employee commuting for the reporting year is calculated as:

 Σ (total distance travelled by vehicle type (vehicle-km or passenger-km) \times vehicle specific emission factor (kg CO_2 e/vehicle-km or kg CO_2 e/passenger-km)) $= (8,640 \times 0.1) + (11,040 \times 0.2) = 3,072 \text{ kg } CO_2$ e

se Studies

Category 8: Upstream Leased Assets

CO₂e emissions from upstream leased assets =

calculate the scope 1 and scope 2 emissions associated with each leased asset:

scope 1 emissions of leased asset

= Σ (quantity of fuel consumed (e.g., liter) × emission factor for fuel source (e.g., kg CO₂e/liter))
 + Σ ((quantity of refrigerant leakage (kg) × emission factor for refrigerant (kg CO₂e/kg))
 + process emissions)

scope 2 emissions of leased asset

= Σ (quantity of electricity, steam, heating, cooling consumed (e.g., kWh)
 × emission factor for electricity, steam, heating, cooling (e.g., kg CO₂e/kWh))

then sum across leased assets:

 Σ scope 1 and scope 2 emissions of each leased asset

e Studies

CATEGORY 9 Downstream Transportation and Distribution

Transportation Reporting Retailer Consumer of sold products Company How to account for scope 3 :: ::: emissions from transportation & distribution of sold products... ...if the company does not pay for Scope 1 & 2 Scope 3 category 9 Scope 3 category 9 transportation of sold products to retailer ...if the company does pay for Scope 1 & 2 Scope 3 category 4 Scope 3 category 9 transportation of sold products to retailer

Studies

CATEGORY 9 Downstream Transportation and Distribution

Purchaser	Mass of goods sold (tonnes)	Total downstream dis- tance transported (km)	Transport mode or vehicle type	Emission factor (kg CO ₂ e/tonne-km)
В	4	2,000	Truck (rigid, >3.5-7.5t)	0.2

Note: the activity data and emissions factors are illustrative only, and do not refer to actual data.

emissions from downstream transport:

 Σ (quantity of goods sold (tonnes) × distance travelled in transport legs (km) × emission factor of transport mode or vehicle type (kg CO₂e/tonne-km)) = $4 \times 2,000 \times 0.2 = 1,600 \text{ kg CO}_2\text{e}$

ource Studies

Category 10: Processing of Sold Products

Studies

Category 10: Processing of Sold Products

CO,e emissions from processing of sold intermediate products =

sum across fuel consumed in the processing of sold intermediate products:

 Σ (quantity of fuel consumed (e.g., liter)

× life cycle emission factor for fuel source (e.g., kg CO₂e/liter))

+

sum across electricity consumed in the processing of sold intermediate products:

 Σ (quantity of electricity consumed (e.g., kWh)

× life cycle emission factor for electricity (e.g., kg CO₂e/kWh))

+

sum across refrigerants used in the processing of sold intermediate products:

Σ (quantity of refrigerant leakage (kg) × Global Warming Potential for refrigerant (kg CO₂e/kg))

÷

sum across process emissions released in the processing of sold intermediate products

+

to the extent possible, sum across waste generated in the in the processing of sold intermediate products:

 Σ (mass of waste output (kg) × emission factor for waste activity (kg CO₂e/kg))

ce Studies

Category 11: Use of Sold Products

Type of Emissions	Product Type	Examples	
Direct use-phase emissions (<i>required</i>)	Products that directly consume energy (fuels or electricity) during use	Automobiles, aircraft, engines, motors, power plants, buildings, appliances, electronics, lighting, data centers, web-based software	
	Fuels and feedstocks	Petroleum products, natural gas, coal, biofuels, and crude oil	
	Greenhouse gases and products that contain or form greenhouse gases that are emitted during use	CO ₂ , CH ₄ , N ₂ O, HFCs, PFCs, SF ₆ , refrigeration and air-conditioning equipment, industrial gases, fire extinguishers, fertilizers	
Indirect use-phase emissions (<i>optional</i>)	Products that indirectly consume energy (fuels or electricity) during use	Apparel (requires washing and drying), food (requires cooking and refrigeration), pots and pans (require heating), and soaps and detergents (require heated water)	

Eco-Industry Research and Training Center, Mahidol University

irce Studies

Category 11: Use of Sold Products

CO,e emissions from use of sold products =

sum across fuels consumed from use of products:

Σ (total lifetime expected uses of product × number sold in reporting period × fuel consumed per use (kWh) × emission factor for fuel (kg CO₂e/kWh))

+

sum across electricity consumed from use of products:

∑ (total lifetime expected uses of product × number sold in reporting period × electricity consumed per use (kWh) × emission factor for electricity (kg CO₂e/kWh))

+

sum across refrigerant leakage from use of products:

 Σ (total lifetime expected uses of product × number sold in reporting period × refrigerant leakage per use (kg) × global warming potential (kg CO₂e/kg))

esource Studies

Category 12: End-of-Life Treatment of Sold Products

CO₂e emissions from end-of-life treatment of sold products =

sum across waste treatment methods:

 Σ (total mass of sold products and packaging from point of sale to end of life after consumer use (kg)

- × % of total waste being treated by waste treatment method
- × emission factor of waste treatment method (kg CO₂e/kg))

Faculty o

Mahidol University

การคำนวณ GHG SCOPE 3

rce Studies

Category 12: End-of-Life Treatment of Sold Products

Mass of waste after consumer use (kg)	Waste treatment	Proportion of waste produced (percent)	Emission factor of waste treatment method (kg CO ₂ e/kg)
	Landfill	90	0.3
10,000	Incinerated	10	1.0
	Recycled	0	0.0

Note: The activity data and emissions factors are illustrative only, and do not refer to actual data.

 Σ (total mass of sold products at end of life after consumer use (kg)

- × % of total waste being treated by waste treatment method
- × emission factor of waste treatment method (kg CO₂e/kg))

= $(10,000 \times 90\% \times 0.3) + (10,000 \times 10\% \times 1) + (10,000 \times 0\% \times 0) = 3,700 \text{ kg CO}_2\text{e}$

Studies

Category 13: Downstream Leased Assets

	Combined scope 1 and scope 2 emissions (kg CO ₂ e)	Floor space (m²)
Factory 1	0.000	5,000
Factory 2	9,000	10,000

Note: The activity data and emissions factors are illustrative only, and do not refer to actual data

The emissions of company C's (lessor) downstream leased asset is calculated as follows:

 Σ scope 1 and scope 2 emissions of lessee (kg CO2e)

physical area of the leased asset (e.g., area, volume) total physical area of lessor assets (e.g., area, volume)

 $= 9,000 \times (5,000 / 15,000) = 3,000 \text{ kg CO}_2\text{e}$

e Studies

Category 14: Franchises

CO,e emissions from franchises =

sum across franchises:

 Σ (scope 1 emissions + scope 2 emissions of each franchise (kg CO₂e))

CO,e emissions from franchises =

Step 1: aggregation of franchise emissions per group:

total emissions from sampled franchises within group

total number of franchises within group

number of franchises sampled within group

Step 2: aggregation of total franchise emissions across all groups:

 Σ total scope 1 and scope 2 emissions from each asset group

Mahidol University Wisdom of the Land

การคำนวณ GHG SCOPE 3

ource Studies

Category 15: Investments

dies

Category 15: Investments

Emissions from equity investments =

sum across equity investments:

 Σ (scope 1 and scope 2 emissions of equity investment × share of equity (%))

Investment	Investment type	Scope 1 and scope 2 emissions of investee company in reporting year (tonnes CO ₂ e)	Reporting company's share of equity (percent)
1	Equity Investment in subsidiary	120,000	40
2	Equity Investment in subsidiary	200,000	15
3	Equity investment in joint venture	1,600,000	25
4	Equity investment in joint venture	60,000	25
Note: The data are	joint venture illustrative only, and do not	refer to actual data.	

GHG Reporting

		2	63/	41
รายงานการปร	ล่อยและดดก	291	กาชเ	รถนกระจก
o IDO INCIT I OD	10 December 1	91	11 120	00 1011 00 011

	- 1
	_
	- 1

ชื่อบริษัท:	
ที่อยู่/ที่ตั้งโรงงาน:	
วันที่รายงานผล:	
ระยะเวลาในการติดตามผ	เล :

เพื่อการทวนสอบและรับรองผลคาร์บอนฟุตพริ้นท์ขององศ์กร โดย องศ์การบริหารจัดการก๊าซเรือนกระจก (องศ์การมหาชน)

GHG Reporting

- บทน้ำ
- ข้อมูลทั่วไป (ชื่อบริษัท ที่ตั้ง ประเภทอุตสาหกรรม ชื่อผู้ประสานงาน และรับผิดชอบ ระยะเวลาการติดตามผล)
- ขอบเขตองค์กร (โครงสร้างองค์กร แผนผังโรงงาน)
- ขอบเขตการดำเนินงาน (แหล่งปล่อยก๊าซเรือนกระจก)
- สรุปปริมาณก๊าซเรื่อนกระจก
- การติดตามผล
- ปิฐาน
- การจัดการคุณภาพข้อมูล
- ภาคผนวก (ข้อมูลสนับสนุน)

Mahidol University การทวนสอบค่าคาร์บอนฟุตพริ้นท์ขององค์กร

เป้าหมายของการทวนสอบ

- การทบทวนข้อมูล
- ตรวจสอบความถูกต้องของการคำนวณ
- ั∕การรายงานผล
- การแสดงปริมาณคาร์บอนฟุตพริ้นท์ขององค์กรว่ามีความ สอดคล้อง เป็นกลางและอยู่บนพื้นฐานของข้อเท็จจริงหรือไม่

Mahidol University Wisdom of the Land

Contact Address

คร. ภาณุวัฒน์ ประเสริฐพงษ์

Eco-Industry Research and Training Center Faculty of Environment and Resource Studies Mahidol University, Salaya, Nakornpathom

Tel: 02-441-5000 ext. 1329

Cell Phone: 085-1887248

E-mail: Phanuwat.pra@mahidol.ac.th

Line ID: k-012

Website: www.en.mahidol.ac.th/EI

